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As science and technology become increasingly sophisticated, government 
and industry are relying more and more on science’s advanced methods to 
determine reliability. Unfortunately, political, economic, time, and other 
constraints imposed by the real world inhibit the ability of researchers to 
calculate reliability efficiently and accurately. Because of such constraints, 
reliability must undergo an evolutionary change. The first step in this 
evolution is to reinterpret the concept so that it meets the new century’s 
needs. The next step is to quantify reliability using both empirical methods 
and auxiliary data sources, such as such as expert knowledge, corporate 
memory, and mathematical modeling and simulation. 
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1.0 Introduction 

“Reliability” is a charged word guaranteed to get attention at its mere mention. 

Bringing with it a host of connotations, reliability, and in particular its appraisal, faces a 

critical dilemma at the dawn of a new century.  

Traditional reliability assessment consists of various real-world assessments driven by 

the scientific method. In other words, conducting extensive real-world tests over extensive 

time periods (often years) enabled scientists to determine a product’s reliability under a 

host of specific conditions.  

In the 21st century, humanity’s technological advances walk hand in hand with myriad 

testing constraints, such as political and societal mores, economic and time considerations, 

and lack of scientific and technological knowledge. Because of these  
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constraints, the accuracy and efficiency of traditional reliability becomes much more 

questionable. 

For example, how can traditional reliability assessment techniques determine the 

dependability of manned space vehicles designed to explore Mars, given that humanity has 

yet to venture that far into space? How can we determine the reliability of a nuclear 

weapon, given that the world has in place test-ban treaties and international agreements? 

And finally, how can we decide which artificial heart to place into a patient, given neither 

has ever been inside a human before? 

To resolve this dilemma, reliability must be (1) reinterpreted and (2) quantified.  

To reinterpret reliability, we must first move away from logical inferences and move 

closer to empirical evidence. The primary reason for this shift is because logic 

encompasses a world of tautologies, with terms such as “certainty” and “impossibility.” 

Techniques driven by logic calculate numbers such as 10-9 for failure rates. Does this 

number mean one failure in 109 identical trials? Is it possible in the real world to create 

identical trials? From a practical point of view, logical approaches are much too abstract 

to be an effective means of determining the reliability of products in the real world. 

As has been previously stated, empirical evidence drives the traditional meaning of 

reliability. Using the scientific method, researchers use empirical evidence to determine 

the probability of success or failure. Therefore, reliability can be seen as a mirror image of 

probability. But what exactly is probability, particularly at the dawn of a new century? The 

first part of this paper presents an overview of several interpretations of probability and 

how they relate to reliability. 
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Once reliability has been reinterpreted, we must next quantify it. And this is where 

advanced methodologies mix with traditional ones. Rather than relying alone on so-called 

“hard data,” the redefined concept of reliability incorporates auxiliary sources of data, 

such as expert knowledge, corporate memory, and mathematical modeling and simulation. 

By combining both types of data, reliability assessment is ready to enter the 21st century.  

 
2.0 Reliability, Probability, and Decision Making 

In this section we discuss reliability’s link to decision making and its close association 

with probability. This overview will serve as a foundation for the next section, which 

addresses the reinterpretation of reliability. 

 
2.1 What is Reliability? 

When most individuals think of the term reliability, they equate feelings of credibility, 

trustworthiness, and dependability. Some specialists (e.g., social scientists) have a much 

narrower interpretation, one in which reliability equates with the consistency of a test 

instrument (such as psychological test). A classical example of this interpretation is the 

rising and setting of the sun. Because humanity has seen the sun rise and set for as long as it 

can remember, there is an almost certain belief that the sun will rise and set tomorrow. 

This paper defines reliability as a mathematical term (see Barlow and Proschan, 

1975). Thus, reliability is a quantified measure of uncertainty about a particular type of 

event (or events). Reliability can be seen as a function of probability. In the sun example, it 

therefore is highly probable that the sun will rise and set tomorrow, given the wealth of 

empirical data.  
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2.2 Reliability’s Role in Decision Making 

Reliability can be seen as a tool that helps individuals make logically sound decisions. 

Decisions can be technical (e.g., science and engineering) or nontechnical (e.g., strategy or 

management). This role brings up two principal questions: 

• If reliability is defined as a quantified measure of uncertainty, then whose 
uncertainty is it? 

• What does it mean to say that a decision is logically sound? 
 
There are several answers to the first question. For example, the uncertainty may 

pertain to a particular group of individuals or there may be an inherent notion of 

“universal” uncertainty. Section 5.0 shows that the answer to this first question dictates the 

paradigm used to quantify reliability.  

Logically sound decisions use what is called a normative approach. This approach 

involves a system of rules (also called axioms) that a decision maker or a group of 

decision makers has agreed upon as being appropriate. This type of approach in essence 

tells us how we should act, not how we actually act. In most instances, individuals make 

decisions based on emotion, whim, and personal/political agendas. A classic example of 

such decision making is when individuals elect to drive instead of taking an airplane, 

despite empirical evidence that the latter is a much safer mode of transportation.  

However, the normative approach is crucial in decision making because of its logic, 

which in turn makes such decisions much easier to explain and, if necessary, justify.  

Figure 1 provides an outline of the normative approach in the form of what is known as 

a decision tree (this tree is a generic example for a system deployment decision).  

A decision tree consists of one more decision nodes (shown as rectangles on Fig. 1) and 

one or more random nodes (shown as circles). A decision node always precedes a random 
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node, but a random node may or may not be followed by a decision node. At the terminus 

of a tree are “consequences” that can include 

• tangibles such as costs, penalties and profits, and  
• intangibles such as goodwill, tastes, and preferences. 

 
When the consequences are quantified (and represented on a scale, such as from zero to 

one) they are known as “utilities.” 

The decision tree shown in Fig. 1 consists of one decision node from which spawn two 

decisions. If the system is deployed, then there are two possible outcomes, each of which 

brings about separate consequences. Similarly, when the system is not deployed, there is a 

resulting consequence. Although decision trees are not a new idea (for an overview of 

related literature, see Booker and Bryson, 1985a and 1985b), they remain a powerful 

characterization of the normative approach to decision making. 

Fig. 1. An example of a decision tree. 

There are two formal processes used to make decisions: the “Analytical Hierarchy 

Process” of Saaty (1980) and the “Statistical Decision Theory” (DeGroot, 1992).  

Of these, only the latter is considered a normative approach. This theory in turn has  

two variants, the Bayesian and the frequentist, with the former considered normative. 

Outcome 
Probabilities 

(or Reliabilities)

Decision 
Node

Random 
Node

Utilities

Do not Deploy 
System

Deploy 
System

Consequence

Mission Succeeds

Mission Fails

Consequence

Consequence
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Commonly referred to as the Bayesian Decision Theory, it is entirely based on the calculus 

of probability (see Section 3.0).  

According to the dictates of this theory, a decision maker should choose that action 

which maximizes the expected utility [cf. Lindley 1985, p.59]. An action’s expected utility 

is the sum of the products of the probability of an action’s outcome and the consequence 

that results from the action-outcome combination. To compute the expected utility of each 

action, we must determine the probabilities of all the outcomes that can result from the 

action. Therefore, like utilities, outcome probabilities are the required ingredients of 

normative decision making in a certain class of problems, namely problems that involve 

the ability of systems to perform (or not) as desired. 

 
2.3 Understanding Reliability 

If we accept that reliability consists of a quantified measure of uncertainty, then we 

must once again ask to whom the uncertainty belongs: Does it belong to an individual?  

Is it an interpretation from a group? Or is it a notion of inherent universal uncertainty?  

This question’s answer depends on the basis for the quantification of uncertainty.  

The basis could be based upon any of the following: 

1. engineering, scientific, or other subject matter information; 
2. mathematical models, physical models, and simulations; 
3. informed testimonies and collective judgements from subject matter specialists; 
4. corporate memory, commercial databases, knowledge bases, and historical 

information; 
5. hard statistical data on several replicas of the uncertain event(s) of interest via 

experiments and tests; and 
6. all the above. 
 
This list represents numerous schools of thought. For example, some schools maintain 

that only hard statistical data are relevant for quantifying uncertainty, whereas other 
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schools advocate that all the methodologies should be represented. Philosophical 

disagreement plays a critical role in quantifying reliability. For example, an individual 

who advocates hard data exclusively will calculate a reliability that is dramatically 

different from someone who advocates using hard data and modeling and simulation. The 

inherent universal uncertainty incorporates the random physical and natural variation left 

after exhausting the sources on information, data, and knowledge listed above. Our 

reinterpretation of reliability advocates the use of all data on the list, and its success has 

been demonstrated1 (Meyer, Booker, and Bement, 1999). 

3.0 Probability: A Method to Quantify Uncertainty (Reliability) 

This section provides an overview of several attempts at addressing the quantification 

of uncertainty. These attempts have contributors with diverse backgrounds, from 

philosophers and economists to physicists, psychologists, sociologists, engineers, 

statisticians, and mathematicians. Each approach has it own merits and flaws. Before we 

discuss these approaches, we must introduce some notation and terminology.  

 
3.1 Notation and Terminology 

Let E, E1, . . ., Ei, . . ., denote several uncertain events of interest at some reference 

time, say τ. Although it is common to set τ=ο,  it is important not to lose track of its 

presence. For example, E could denote an event that a deployed system accomplishes its 

mission. The complement of E is denoted by E , the event that a deployed system fails to 

                                                             
1PREDICT (which stands for Performance & Reliability Evaluation with Diverse Information 
Combination and Tracking) is an integrated reliability methodology that combines all available 
information, with appropriate uncertainties attached, relating to the system’s performance. Information 
sources include expert judgement, historical data/information about the system’s parts and processes, 
vendor/designer specifications, computer simulation output results, physical models, test data, and data on 
similar parts, subsystem, processes and systems. As new information becomes available, the method 
permits updating the performance of the system. 
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accomplish its mission (see Fig. 1). Another example could be that Ei={Ti≥t}, where Ti 

denotes the lifetime of the i-th sub-system of a deployed system (measured from the time of 

the system’s deployment) and {Ti≥t} denotes the event that the i-th sub-system functions for 

at least t units of time. In this case, t is called the “mission time.” 

Let H denote the “history” or the “background information” available to the 

individual(s) contemplating the uncertain events, at time τ. In principle, H should 

encompass all that is known at time τ: scientific knowledge, engineering information, 

informed testimonies, design specification, physical models, computer codes, judgement, 

preferences, and hard historical data on replicates of the uncertain event (if available). 

Thus at any time τ, there is the known H, and the unknown E, E1, . . ., Ei, . . ., . 

The fundamental problem of the treatment of uncertainty is how the uncertainty about E, 

E1, . . ., Ei, . . ., at the τ, should be quantified in the light of H. To address this problem, 

several approaches have been proposed, some of which pay attention to the issue of 

“whose uncertainty” and others which impose restrictions on what H can and cannot 

contain. Some of these proposed approaches are as follows: 

• probability,  
• belief functions,  
• possibility theory and fuzzy logic,  
• upper and lower probabilities,  
• Jeffrey's Rule of Combination,  
• confidence limits,  
• hypothesis testing with Type I and Type II errors,  
• significance levels,  
• maximum likelihood estimates, and  
• goodness of fit tests. 
 
Some of these approaches have a normative foundation, whereas others are ad hoc. We 

will focus on probability and make a case for it. 
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3.2 Probability and the Calculus of Probability 

The calculus of probability consists of certain rules (or axioms) denoted by a number 

determined by P τ(E; H), in which the probability of an event, E, is related to H at time τ. 

When the event E pertains to the ability to perform a certain function (e.g., survive a 

specified mission time), then P τ(E; H) is known as the product’s reliability. Therefore, 

reliability is de facto the probability of a certain type of an event. 

When the item in question is a human subject, the term “survival analysis,” rather than 

reliability, is commonly used. As indicated above, the mission time need not be measured 

in units of time, but rather it can be taken from other performance metrics, such as miles 

traveled, rounds fired, cycles completed, or output produced. 

The calculus of probability consists of the following three rules: convexity, addition, 

and multiplication. These rules are given mathematically in order: 

• 0 ≤ P τ(E; H) ≤ 1, for any event E; 
• P τ(E1, or E2; H) = P τ(E1; H) + P τ(E2; H) for any two events E1 and E2 that are 

mutually exclusive—that is, they cannot simultaneously take place; and  
• P τ(E1 and E2; H) = P τ(E1 | E2; H) · P τ(E2; H), where P τ(E1 | E2; H) is a 

quantification via probability of the uncertainty about an event E (supposing that 
event E2 has taken place). 

 
The quantity P τ(E1 |  E2; H) is known as the “conditional probability” of E1, given E2. 

Note that conditional probabilities are in the subjunctive. In other words, the disposition of 

E2 at time  τ, were it to be known, would become a part of the history H at time  τ.  

The vertical line between E1 and E2 represents a supposition or assumption about the 

occurrence of E2.  Finally, P τ(E1 and E2; H) also can be written as P τ(E2 | E1; H) · P τ(E1; 

H) because at time τ both E1 and E2 are uncertain events and one can contemplate the 

uncertainty about E1 supposing that E2 were to be true or vice versa. 
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The calculus of probability does not interpret probability. It neither tells use what 

probability means, nor is it concerned with issues, such as the nature of uncertainty, whose 

uncertainty, how large should H be, and how to determine P τ(E; H) and make the result 

operational.  

What does the calculus do? It simply provides a set of rules by which the uncertainties 

about two or more vents combine or “cohere.” Any set of rules for combining uncertainties 

that are in violation of the rules given above are said to be “incoherent” with respect to the 

calculus of probability. The next section discusses why these rules are necessary.  

 
3.3 Why Subscribe to the Calculus of Probability? 

In addition to the calculus of probability, there are a number of methods designed to 

comb and specify uncertainties, such as  

• Jeffrey’s rule of combination (Jeffrey, 1983),  
• possibility theory and fuzzy logic (Zadeh, 1979),  
• upper and lower probabilities (Smith, 1961), and  
• belief functions (Dempster, 1968). 
 
With so many theories, why should anyone subscribe to the calculus of probability? In 

a book by Howson and Urbach (1989), a number of contributors attempt to answer this 

very question; contributors range from gamblers and philosophers to mathematicians, 

decision theorists, behavioral scientists, and experts in artificial intelligence and 

knowledge acquisition. In the following subsections, we present some of the arguments 

used to justify the calculus of probability.  

 
3.3.1 The Flaw of “Can’t Win” 

Since the time of Cardono (who lived during the 1500s), gamblers recognized that 

avoiding the rules of probability in games of chance resulted in a “sure loss” (i.e., a Dutch-
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Book). A classic example is a coin toss in which the scenario is as follows: heads you 

lose, tails I win.  

 
3.3.2 The Scoring Rule 

To justify the calculus of probability, de Finetti (cf. Lindley, 1982) used a “scoring 

rule,” which is used to ask an individual assessing and uncertainty to declare a number that 

best describes said individual’s uncertainty. Once the uncertainty reveals itself or is 

resolved, the individual is scored (i.e., rewarded or penalized) according to how close the 

declared number was to reality. 

De Finetti’s core argument is that under some very general conditions, an individual 

faced with a collection of uncertainties must use the calculus of probability to maximize an 

overall score. The above claim is true for a large class of scoring schemes. 

 
3.3.3 Betting Coefficients 

In horse racing, certain numbers known as “betting coefficients” are used. These 

numbers are odds on or against a particular horse or horses involved in a horse race. It has 

been demonstrated (for example, by Howson and Urbach, 1989) that to maximize winnings 

(i.e., determine the most accurate probability of success), the betting coefficients must 

follow the calculus of probability. 

 
3.3.4 Behavioristic Axioms 

The three previous subsections provided answers based on gambling and scoring 

scenarios; such scenarios could be objectionable to some individuals, particularly those 

who question the moral and ethical implication of gambling and fierce competition. 

Therefore, Ramsey (1931) and Savage (1972) proposed an alternative system of 
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“behavioristic axioms” to justify the calculus of probability. Based in mathematics, the 

Ramsey-Savage argument is related to coherence and consistency (an excellent exposition 

of this argument is given by DeGroot, 1970).  

This argument has two principal difficulties. The first is that the intuitive and natural 

elements of gambling and scoring are lost; axiomatic arguments tend to be abstract and 

therefore less appealing. The second and perhaps more serious difficulty is that 

behavioristic axioms are in actuality violated by (most) individuals (cf. Kahneman, et al., 

1986). Despite these criticisms, behavioristic axioms prescribe normative behavior. It is 

not imperative that the calculus of probability be treated as axiomatic, but rather that it is 

seen as a consequence of certain behavioristic axioms, with the latter being taken as given 

(not withstanding some criticism).  

 

4.0 Reinterpreting Reliability 

 As we have shown in Section 2.0, reliability is a probability, and because the latter 

can be interpreted in several ways, then it follows the reliability can be interpreted and 

quantified in several ways. Because of the flexibility of these terms, there are many 

different philosophies behind effective decision making. Thus, which philosophy we 

advocate will dictate the effectiveness of reliability assessment in the 21st century.  

There are four principal theories related to interpreting probability: 

• Classical Theory,  
• A Priori or Logical Theory,  
• Relative Frequency Theory, and  
• Personalistic or Subjective Theory. 
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Although the interpretation of reliability has no effect on the calculus of probability 

(see Section 3.0), the assignment of initial probabilities (which are needed to initiate the 

calculus) depends on reliability’s interpretation. The following provide an overview of the 

key features of the four theories mentioned above. For more detailed information, please 

consult Fine (1973), Good (1965), Maistrov (1974), Hacking (1974), or Gigerenzer et al. 

(1989). 

4.1 Classical Theory 

Influenced by Newton, the following “determinists” founded this theory: Cardano, 

Pascal, Fermat, Huygens, Bernoulli, DeMoiure, Bayes, Laplace, and Poisson.  

As determinists, these individuals believed that every event, act, and decision was the 

inevitable consequence of antecedents that are independent of the human will. Of these 

individuals, the only one to venture a formal definition of probability was Laplace, who in 

essence described it as the ratio of favorable cases to the number of “equipossible” cases. 

Cases are equipossible if we have no reason to expect the occurrence of one over the 

other. The setup involving equipossible cases consists of the three following labels: 

• “principle of indifference,”  
• “principle of insufficient reason,” or 
• “Bayes’ postulate.” 

Although this theory has merit in games of chance, it also has a number of deficiencies.  

For example, the principle of indifference appears to be a circular argument because 

equipossible implies “equiprobable” and vice versa. It also is difficult to divide up 

alternatives. For example, take the following problem: 

When rolling a die, what is the probability that it will land on “5”? The 
answer is 1/6, if the alternatives are considered 1, 2, . . . 6, but it is 1/2 if 
the alternatives are considered are a 5 and not a 5.  
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Perhaps the most crucial flaw is the potential for exceptions. For example, what if the 

die in the example above is loaded? What if there is a flaw in the die itself, which in turn 

affects the overall probability? Given these exceptions, now think of a unique space 

vehicle. What flaws will affect its reliability? 

Although deficient, this theory is used to this day. It is particularly useful in teaching the 

concept of probability, as well as in a number of applications, such as Monte Carlo 

simulation, sampling, and experimental design.  

 
4.2 A Priori Theory 

Although it was the economist Keynes who first proposed the A Priori Theory of 

probability, it was Carnap (a physicist whose interests ranged from logic and syntax to 

semantics and languages) who expanded upon it. Others who have contributed to this 

theory include Jeffreys (1961), Koopman, Kemney, and Good (1965), and Ramsey (1964). 

The A Priori Theory is difficult to summarize in words because it involves the notions 

of logic and syntax. Basically, it interprets probability as a logically derived “entity.” In 

other words, a violation of logic yields an inappropriate conclusion. Because it is difficult 

to apply this theory to reliability assessments, this theory is often discussed but rarely used.  

 
4.3 Relative Frequency Theory 

Although the origin of this theory dates back to Aristotle, it was Venn who was the first 

to articulate the concept in 1866. Its mathematical development has been traced to von 

Mises (1957), whereas its philosophical discourse was developed by Reichenbach (1949). 

The following bullets summarize this theory’s key elements: 

• Probability is a measure of an empirical, objective, and physical fact of the real 
world. It is independent of human attitudes, opinions, models, and simulations. Von 
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Mises believed probability to be a part of a descriptive model, whereas 
Reichenbach viewed it as part of the theoretical structure of physics.  

• Because probability is based only upon observations, it can be known only  
a posteriori (literally, after observation).  

 
4.3.1 This Theory’s Virtues 

This theory applies to cases in which the indifference principle fails to hold (a six-

faced die is loaded). Because the theory emphasizes observation, it has a strong link with 

the scientific method. Moreover, the theory rejects intangible things and relies on what 

many consider the essential tools of science: experimentation, observation, and 

confirmation through experimental replication. 

 
4.3.2 This Theory’s Criticisms 

The “core” of this theory is on replication. To achieve replication, we must  

• introduce a random “collective” (i.e., a scenario involving events that repeat again 
and again),  

• define that probability is indeed a random collective, and  
• specify that probability is a property of the collective and not an individual member 

of said collective. 
 
Creating a collective in the real world is a difficult problem. For example, tossing a 

coin an infinite number of times raises the following question: To be considered a 

collective, how similar must the tosses be? If the tosses are identical, then the outcome will 

not change. If they are dissimilar, how much dissimilarity is allowed (if this can be 

assessed at all)? Finally, relative frequency probability is never known, can never be 

known to exist (limits of sequences is an abstract mathematical notion), and its value can 

never be confirmed or disputed. 

Although collectives can be developed for social phenomena (actuarial tables and 

individual IQs) and some topics in physics (e.g., movement of gas particles), it is for the 
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most part a difficult task. Although the collective concept was first embraced by physicists 

like von Mises, it was subsequently rejected by individuals like Bohr and Schrodinger, 

both of whom were influenced by Heisenberg’s “principle of uncertainty.” This principal 

defined uncertainty and probability without the collective concept. 

Under the relative frequency view of probability, τ and H have no role to play, so that 

P τ(E; H) = P(E).  Similarly, expert testimonies, corporate memory, mathematical models 

and scientific information do not matter; only hard data on actual events can be used to 

assess the initial probabilities. 

 
4.4 The Personalistic or Subjective Theory 

Although Borel was perhaps the first to generate this theory as early as 1924, it was 

Ramsey who in 1931 first articulated the theory. It was later refined by de Finetti (1937 

and 1974) and Savage (1954).  

According to the theory, there is no such thing as an objective probability. Moreover, 

probability is a degree of belief for a given individual at a given time. Not only must the 

degree of belief be measured in some fashion, but also an individual’s degrees of belief 

must conform to each other in a certain manner. The individual in question is an idealized 

one—in essence, one who behaves normatively.  

Because the intensity of belief is extremely difficult to quantify, researchers elected to 

look at some property related to it. For example, Ramsey and de Finetti favored a 

behavioristic approach in which the degree of belief is expressed through the willingness 

to gamble. Thus, the probability of an event is the amount (say p) the individual is willing 

to bet, on a two-sided bet, in exchange for $1, should the event take place. By a two-sided 

bet we mean staking (1-p) in exchange for $1, should the event not take place. 
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The normative component of this theory lies in a feature known as “coherence.” 

Coherence ensures that the degrees of belief do not conflict (for example, it avoids a 

Dutch-Book). This is achieved by adhering to the calculus of probability.  

 
4.4.1 This Theory’s Virtues 

According to this theory, probability is dictated by individual opinions, and thus 

“unknown probability,” “correct probability,” and “objective probability” cannot be 

achieved. To determine an individual’s probabilities, all a researcher need do is invoke 

the principle of indifference, apply a system of carefully conducted comparative wagers, or 

simply ask the individual. In this theory, any factor that an individual elects to consider is 

relevant and any coherent value is as good as another. 

 
4.4.2 This Theory’s Criticisms 

The principal criticism leveled at this theory is that there can be little if any 

consistency in determining probability. For example, the theory has no provision to ensure 

that individuals with identical background information will declare identical probabilities. 

Given an individual’s action, it is difficult to separate the individual’s probabilities from 

his or her utilities. Because consistency is the hallmark of science, this theory is commonly 

refuted by scientists and engineers alike.  

Perhaps the most important argument against this theory is that experiments by 

psychologists have shown that individuals do not declare probabilities that have coherence 

(i.e., they do not act according to the dictates of the calculus of probability).  

A counter-argument to the above criticism is that the theory of personal probability is a 

normative one; it prescribes how we should act—not how we do act. 
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5.0 Which Interpretation of Probability is Appropriate for Reliability? 

In the world of organizations such as the U.S. Government’s Military Standards, 

automobile warranties, and commercial contracts, reliability analysis is entrenched in the 

relative frequency view of probability. With its claims of “objectivity,” this position is 

reinforced by the peer review process for publication in many applied scientific journals.  

This traditional interpretation to a degree has become outdated. For example, decision 

makers must make determinations under a number of intense restrictions, such as little or no 

testing (nuclear weapons, global climate change, and automotive reliability), one- or first-

of-a-kind units (aerospace and medical applications), and economic testing (particularly in 

the manufacturing industry). Because of these and other restrictions, there has been a 

gradual shift toward the more personalistic view.  

This shift can be traced back to the nuclear reactor industry (see WASH 1400, 1975) 

and evolved as the U.S. Government began to experience intense pressure over defense 

expenditures. As science and technology continued to evolve, other government and 

commercial areas began to feel the pressures of testing in complex and dynamic 

environments, particularly because such tests are either expensive, time consuming, or 

prohibitive for other reasons. The following are but five examples: 

• Stricter emissions and performance requirements for automobiles while their 
engines operate at the cutting edge of physics and engineering (Kerscher et al., 
2000). 

• Determining software reliability by using complex and large computations  
(al-Mutairi et al., 1998). 

• Using graphical, numerical, and simulation-based methods for a broad range of 
models found in reliability. This covers areas such as analyzing degradation data, 
in which failure is not dichotomous but continuous (Meeker and Escobar, 1998). 

• Empirical techniques used to solve complex manufacturing techniques by using an 
empirical Bayesian approach to combine data with prior information (Samaniego 
and Neath, 1996). 
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• Using probability models for failure data analysis regarding maintenance and 
prediction related to a preliminary design. This is done by using influence 
diagrams, as well as a Bayesian approach (Barlow 1998).  

 
From a philosophical standpoint, the personalistic interpretation of probability does 

not lead to the logical inconsistencies and other difficulties of communication mentioned 

before, nor does it demand the availability of a large amount of hard data (or preclude use 

if such data are available). This type of interpretation also enables us to do the following: 

• Make statements of uncertainty about unique products or systems. 
• Incorporate information for all sources that are deemed appropriate.  
• Incorporate all relevant knowledge we have at any given time with the ability to 

update our probabilities (and hence reliabilities) as new knowledge becomes 
available. 

 
Th formal use of all relevant knowledge can reveal unanticipated problems before 

costly decisions are made, such as manufacturing recalls and disasters such as the Shuttle 

Challenger. Therefore, we, feel that this is the point of view most appropriate for 

addressing the reliability problems in the 21st century. 

From a pragmatic point of view, the dramatic evolution of our computational 

capabilities in recent years has made knowledge and information available in a variety of 

qualitative and quantitative forms. Large-scale simulations of complex, physical systems 

(such as transportation simulation, Beckman, 1997) provide gigabytes of information that 

must be analyzed and condensed in a form readily applicable for decision makers. Taking 

advantage of these information sources, including hard data, is what further motivates our 

point of view. 

 
6.0 Using Expert Testimony in Reliability Assessment 

Once we adopt a personalistic interpretation of probability (reliability), we can assess 

reliability by using the calculus of probability on informed testimonies based on 
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judgements, experience, simulations, or mathematical models. Expert testimony plays a 

crucial role particularly in cases in which hard data are unavailable or even impossible to 

obtain. In many instances, scientists and engineers have the knowledge and experience that 

can augment what little empirical evidence is available.  

To maximize the accuracy of such expertise, it must be properly elicited and analyzed 

(cf. Meyer and Booker, 1991). Informed testimonies do not obviate the role of hard data 

when available. Instead, the personalistic view fuses the import of informed knowledge 

and hard data, the latter enhancing the former, via the calculus of probability and its 

extensions. For a detailed overview of this view, see Lindley and Singpurwalla (1986) and 

Singpurwalla (1988). 

 
7.0 Closing Thoughts 

As human science and technology continue to become more and more sophisticated, we 

will become more and more reliant on auxiliary information (especially because of the 

computer revolution) that augments direct hard data, which due to restrictions (such as 

political and societal constraints) may be scarce. Thus, the subjectivist view of probability 

can provide a paradigm for the quantification of uncertainty and information/data 

integration and therefore yield an accurate assessment of reliability. As a result, decision 

makers will have the best tools to apply to a new century of advanced science and 

technology and more sophisticated and complex societal and business issues  
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